Factorization machine (FM) is a predictor model that estimates parameters under the high sparsity. The model combines advantages of SVM and applies a factorized parameters instead of dense parametrization like in SVM [2]. FM is a supervised learning algorithm and can be used in classification, regression, and recommendation system tasks in machine learning. PySpark MLLib API provides a FMRegressor class to implement factorization machines for regression tasks.
In
this tutorial, you'll briefly learn how to fit and predict regression
data by using PySpark FMRegressor in Python. The
tutorial
covers:
- Preparing the data
- Prediction and accuracy check
- Visualizing the results
- Source code listing
from pyspark.ml.regression import FMRegressor
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.evaluation import RegressionEvaluator
from sklearn.datasets import load_boston
import pandas as pd
import matplotlib.pyplot as plt
Preparing the data
We use Boston Housing Price dataset as a target regression data and
we can easily load it from sklearn.datasets module. Below code shows how
to load
the dataset and transform it into the pandas data frame type.
boston = load_boston() df_boston = pd.DataFrame(boston.data,columns=boston.feature_names) df_boston['target'] = pd.Series(boston.target) print(df_boston.head())
Next, we'll define SqlConext and create data frame by using df_boston data.
sc = SparkContext().getOrCreate()
sqlContext = SQLContext(sc)
data = sqlContext.createDataFrame(df_boston)
print(data.printSchema())
root
|-- CRIM: double (nullable = true)
|-- ZN: double (nullable = true)
|-- INDUS: double (nullable = true)
|-- CHAS: double (nullable = true)
|-- NOX: double (nullable = true)
|-- RM: double (nullable = true)
|-- AGE: double (nullable = true)
|-- DIS: double (nullable = true)
|-- RAD: double (nullable = true)
|-- TAX: double (nullable = true)
|-- PTRATIO: double (nullable = true)
|-- B: double (nullable = true)
|-- LSTAT: double (nullable = true)
|-- target: double (nullable = true)
To combine all feature data and separate 'label' data in a dataset, we use VectorAssembler.
features = boston.feature_names.tolist()
va = VectorAssembler(inputCols=features, outputCol='features')
va_df = va.transform(data)
va_df = va_df.select(['features', 'target'])
va_df.show(3)
+--------------------+------+
| features|target|
+--------------------+------+
|[0.00632,18.0,2.3...| 24.0|
|[0.02731,0.0,7.07...| 21.6|
|[0.02729,0.0,7.07...| 34.7|
+--------------------+------+
only showing top 3 rows
Next, we'll split data into the train and test parts.
(train, test) = va_df.randomSplit([0.8, 0.2])
Prediction and Accuracy Check
Next, we'll define the regressor model by using the FMRegressor
class. Here, we'll set label column and step size parameters as shown below. Then, we'll fit the model on
train data. You can check the coefficients and intercept value.
fmr = FMRegressor(labelCol="target", stepSize=0.001)
model = fmr.fit(train)
print(model)
print("Coefficients: ", model.linear)
print("Intercept: ", model.intercept)
Coefficients: [-0.0031597215118115292,0.01264775286246078,
0.006751437529376054,0.06688063485997252,0.024022735933618748,
0.03552901136571402,0.01464627116414251,0.026957322766026113,
0.010074131478299764,0.013412548728266136,0.024255850712787255,
0.022587078320568228,-0.0018044787308271859]
Intercept: 0.0296902251363327
After training the model, we'll predict test data and check the accuracy. Here, we'll use RegressionEvaluater to extract accuracy metrics.
tdata = model.transform(test)
tdata.show(3)
rmse = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="rmse")
rmse = rmse.evaluate(tdata)
mae = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="mae")
mae = mae.evaluate(tdata)
r2 = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="r2")
r2 = r2.evaluate(tdata)
print("RMSE: ", rmse)
print("MAE: ", mae)
print("R-squared: ", r2)
+--------------------+------+------------------+
| features|target| prediction|
+--------------------+------+------------------+
|[0.02729,0.0,7.07...| 34.7|28.002172179767474|
|[0.02985,0.0,2.18...| 28.7|27.391726079614333|
|[0.08829,12.5,7.8...| 22.9|22.811250744987678|
+--------------------+------+------------------+
only showing top 3 rows
RMSE: 6.920893476410719
MAE: 5.113965067177143
R-squared: 0.45681566779638527
Visualizing the results
To
visualize the original and predicted data, we can use 'matplotlib'
library. First, we'll extract original and predicted data from the 'tdata' object.
x_ax = range(0, tdata.count())
y_pred=tdata.select("prediction").collect()
y_orig=tdata.select("target").collect()
plt.plot(x_ax, y_orig, label="original")
plt.plot(x_ax, y_pred, label="predicted")
plt.title("Boston test and predicted data")
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.legend(loc='best',fancybox=True, shadow=True)
plt.grid(True)
plt.show()
If you do new executions of your code, do not forget to close the spark context session.
# Stop session
sc.stop()
In this tutorial, we've briefly learned how to fit and predict
regression data by using PySpark FMRegressor model in Python. The full
source code is listed below.
Source code listing
from pyspark.ml.regression import FMRegressor
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.evaluation import RegressionEvaluator
from sklearn.datasets import load_boston
import pandas as pd
import matplotlib.pyplot as plt
boston = load_boston()
df_boston = pd.DataFrame(boston.data,columns=boston.feature_names)
df_boston['target'] = pd.Series(boston.target)
print(df_boston.head())
sc = SparkContext().getOrCreate()
sqlContext = SQLContext(sc)
data = sqlContext.createDataFrame(df_boston)
print(data.printSchema())
features = boston.feature_names.tolist()
va = VectorAssembler(inputCols = features, outputCol='features')
va_df = va.transform(data)
va_df = va_df.select(['features', 'target'])
va_df.show(3)
(train, test) = va_df.randomSplit([0.8, 0.2])
fmr = FMRegressor(labelCol="target", stepSize=0.001)
model = fmr.fit(train)
print(model)
print("Coefficients: ", model.linear)
print("Intercept: ", model.intercept)
tdata = model.transform(test)
tdata.show(3)
rmse = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="rmse")
rmse = rmse.evaluate(tdata)
mae = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="mae")
mae = mae.evaluate(tdata)
r2 = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="r2")
r2 = r2.evaluate(tdata)
print("RMSE: ", rmse)
print("MAE: ", mae)
print("R-squared: ", r2)
x_ax = range(0, tdata.count())
y_pred=tdata.select("prediction").collect()
y_orig=tdata.select("target").collect()
plt.plot(x_ax, y_orig, label="original")
plt.plot(x_ax, y_pred, label="predicted")
plt.title("Boston test and predicted data")
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.legend(loc='best',fancybox=True, shadow=True)
plt.grid(True)
plt.show()
sc.stop()
References:
No comments:
Post a Comment