PySpark MLLib API provides a LinearSVC class to classify data with linear support vector machines (SVMs). SVM builds hyperplane(s) in a high dimensional space to separate data into two groups. The method is widely used to implement classification, regression, and anomaly detection techniques in machine learning. Linear SVM classifies data into two groups by using linear straight line.
In
this tutorial, you'll briefly learn how to train and classify
binary classification data by using PySpark Linear SVC model. The
tutorial
covers:
- Preparing the data
- Prediction and accuracy check
- Source code listing
from pyspark import SparkContext from pyspark.sql import SQLContext from pyspark.ml.classification import LinearSVC from pyspark.ml.evaluation import MulticlassClassificationEvaluator from pyspark.ml.feature import VectorAssembler from sklearn.metrics import confusion_matrix from sklearn.datasets import load_breast_cancer import pandas as pd
We use Breast Cancer dataset to perform binary classification and it can be easily
loaded from the Scikit-learn dataset module. Below code explains how to
load
dataset and transform it into the pandas data frame type.
Next, we'll define SqlConext and create data frame by using df_bc data. You can check the data frame schema.
bc = load_breast_cancer()
df_bc = pd.DataFrame(bc.data, columns=bc.feature_names)
df_bc['label'] = pd.Series(bc.target)
print(df_bc.head())
mean radius mean texture ... worst fractal dimension label
0 17.99 10.38 ... 0.11890 0
1 20.57 17.77 ... 0.08902 0
2 19.69 21.25 ... 0.08758 0
3 11.42 20.38 ... 0.17300 0
4 20.29 14.34 ... 0.07678 0
[5 rows x 31 columns]
Next, we'll define SqlConext and create data frame by using df_bc data. You can check the data frame schema.
sc = SparkContext().getOrCreate()
sqlContext = SQLContext(sc)
data = sqlContext.createDataFrame(df_bc)
print(data.printSchema())
root
|-- mean radius: double (nullable = true)
|-- mean texture: double (nullable = true)
|-- mean perimeter: double (nullable = true)
|-- mean area: double (nullable = true)
|-- mean smoothness: double (nullable = true)
|-- mean compactness: double (nullable = true)
|-- mean concavity: double (nullable = true)
|-- mean concave points: double (nullable = true)
|-- mean symmetry: double (nullable = true)
|-- mean fractal dimension: double (nullable = true)
|-- radius error: double (nullable = true)
|-- texture error: double (nullable = true)
|-- perimeter error: double (nullable = true)
|-- area error: double (nullable = true)
|-- smoothness error: double (nullable = true)
|-- compactness error: double (nullable = true)
|-- concavity error: double (nullable = true)
|-- concave points error: double (nullable = true)
|-- symmetry error: double (nullable = true)
|-- fractal dimension error: double (nullable = true)
|-- worst radius: double (nullable = true)
|-- worst texture: double (nullable = true)
|-- worst perimeter: double (nullable = true)
|-- worst area: double (nullable = true)
|-- worst smoothness: double (nullable = true)
|-- worst compactness: double (nullable = true)
|-- worst concavity: double (nullable = true)
|-- worst concave points: double (nullable = true)
|-- worst symmetry: double (nullable = true)
|-- worst fractal dimension: double (nullable = true)
|-- label: long (nullable = true)
To combine all feature data and separate 'label' data in a dataset, we use VectorAssembler.
features = bc.feature_names
va = VectorAssembler(inputCols = features, outputCol='features')
va_df = va.transform(data)
va_df = va_df.select(['features', 'label'])
va_df.show(3)
+--------------------+-----+
| features|label|
+--------------------+-----+
|[17.99,10.38,122....| 0|
|[20.57,17.77,132....| 0|
|[19.69,21.25,130....| 0|
+--------------------+-----+
only showing top 3 rows
Next, we'll split data into the train and test parts.
(train, test) = va_df.randomSplit([0.9, 0.1])
Prediction and Accuracy Check
We'll define the linear SVC model by using the LinearSVC
class and fit model on train data. Here, we'll set 50 into the iteration number parameter. To predict test data, we can use trasnform() method.
lsvc = LinearSVC(labelCol="label", maxIter=50)
lsvc = lsvc.fit(train)
pred = lsvc.transform(test)
pred.show(3)
+--------------------+-----+--------------------+----------+
| features|label| rawPrediction|prediction|
+--------------------+-----+--------------------+----------+
|[16.13,17.88,107....| 0|[3.42019452073193...| 0.0|
|[11.31,19.04,71.8...| 1|[-2.5294373438518...| 1.0|
|[12.86,18.0,83.19...| 1|[-2.2054146906822...| 1.0|
+--------------------+-----+--------------------+----------+
only showing top 3 rows
After predicting test data, we'll check the prediction accuracy. Here, we can use MulticlassClassificationEvaluator. Confusion matrix can be created by using confusion_matrix
function of sklearn.metrics module.
evaluator=MulticlassClassificationEvaluator(metricName="accuracy")
acc = evaluator.evaluate(pred)
print("Prediction Accuracy: ", acc)
y_pred=pred.select("prediction").collect()
y_orig=pred.select("label").collect()
cm = confusion_matrix(y_orig, y_pred)
print("Confusion Matrix:")
print(cm)
Prediction Accuracy: 0.9365079365079365
Confusion Matrix:
[[24 2]
[ 2 35]]
Finally, we'll stop spark context session.
# Stop session
sc.stop()
In this tutorial, we've briefly learned how to fit and classify data by using PySpark LinearSVC class. The full
source code is listed below.
Source code listing
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.ml.classification import LinearSVC
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml.feature import VectorAssembler
from sklearn.metrics import confusion_matrix
from sklearn.datasets import load_breast_cancer
import pandas as pd
bc = load_breast_cancer()
df_bc = pd.DataFrame(bc.data, columns=bc.feature_names)
df_bc['label'] = pd.Series(bc.target)
print(df_bc.head())
sc = SparkContext().getOrCreate()
sqlContext = SQLContext(sc)
data = sqlContext.createDataFrame(df_bc)
print(data.printSchema())
features = bc.feature_names
va = VectorAssembler(inputCols = features, outputCol='features')
va_df = va.transform(data)
va_df = va_df.select(['features', 'label'])
va_df.show(3)
(train, test) = va_df.randomSplit([0.9, 0.1])
lsvc = LinearSVC(labelCol="label", maxIter=50)
lsvc = lsvc.fit(train)
pred = lsvc.transform(test)
pred.show(3)
evaluator=MulticlassClassificationEvaluator(metricName="accuracy")
acc = evaluator.evaluate(pred)
print("Prediction Accuracy: ", acc)
y_pred=pred.select("prediction").collect()
y_orig=pred.select("label").collect()
cm = confusion_matrix(y_orig, y_pred)
print("Confusion Matrix:")
print(cm)
sc.stop()
References:
No comments:
Post a Comment