Generalized linear regression is a linear regression that follows any distribution other than normal distribution. PySpark provides a GeneralizedLinearRegression model that includes Gaussian, Poisson, logistic regression methods to predict regression problems.
In
this tutorial, we'll briefly learn how to fit and predict regression
data by using PySpark GeneralizedLinearRegression in Python. The
tutorial
covers:
- Preparing the data
- Prediction and accuracy check
- Visualizing the results
- Source code listing
from pyspark.ml.regression import GeneralizedLinearRegression
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.evaluation import RegressionEvaluator
from sklearn.datasets import load_boston
import pandas as pd
import matplotlib.pyplot as plt
Preparing the data
We use Boston Housing Price dataset as a target regression data and
we can easily load it from sklearn.datasets module. Below code shows how
to load
dataset and transform it into the pandas data frame type.
boston = load_boston() df_boston = pd.DataFrame(boston.data,columns=boston.feature_names) df_boston['target'] = pd.Series(boston.target) print(df_boston.head())
Next, we'll define SqlConext and create data frame by using df_boston data.
sc = SparkContext().getOrCreate()
sqlContext = SQLContext(sc)
data = sqlContext.createDataFrame(df_boston)
print(data.printSchema())
root
|-- CRIM: double (nullable = true)
|-- ZN: double (nullable = true)
|-- INDUS: double (nullable = true)
|-- CHAS: double (nullable = true)
|-- NOX: double (nullable = true)
|-- RM: double (nullable = true)
|-- AGE: double (nullable = true)
|-- DIS: double (nullable = true)
|-- RAD: double (nullable = true)
|-- TAX: double (nullable = true)
|-- PTRATIO: double (nullable = true)
|-- B: double (nullable = true)
|-- LSTAT: double (nullable = true)
|-- target: double (nullable = true)
To combine all feature data and separate 'label' data in a dataset, we use VectorAssembler.
features = boston.feature_names.tolist()
va = VectorAssembler(inputCols=features, outputCol='features')
va_df = va.transform(data)
va_df = va_df.select(['features', 'target'])
va_df.show(3)
+--------------------+------+
| features|target|
+--------------------+------+
|[0.00632,18.0,2.3...| 24.0|
|[0.02731,0.0,7.07...| 21.6|
|[0.02729,0.0,7.07...| 34.7|
+--------------------+------+
only showing top 3 rows
Next, we'll split data into the train and test parts.
(train, test) = va_df.randomSplit([0.8, 0.2])
Prediction and Accuracy Check
Next, we'll define the regressor model by using the GeneralizedLinearRegression
class. Here, we can change the parameters according to data content. You can change family parameter if you want to change the distribution method like, Gaussian, logistic etc. Then, we'll train the model on train data. We can check the coefficients and intercepts. The 'summary' method provides additional properties of trainded model.
glr=GeneralizedLinearRegression(labelCol="target",family="poisson",maxIter=10,regParam=0.3)
model = glr.fit(train)
print("Coefficients: ", model.coefficients)
print("Intercept: ", model.intercept)
Coefficients: [-0.010148363658164322,0.0014127521546288084,
0.0007822237455972935,0.020449846569659914,-0.004984395856161968,
0.05813269428464953,0.0009707035105313463,-0.03081832471491933,
0.015948434951052172,-0.0006842140427757848,-0.035875216756448974,
0.00045811775930736033,-0.03975363325270691]
Intercept: 3.8737122493159895
print(model.summary)
Coefficients:
Feature Estimate Std Error T Value P Value
(Intercept) 3.8737 0.1746 22.1852 0.0000
CRIM -0.0101 0.0023 -4.4504 0.0000
ZN 0.0014 0.0006 2.4772 0.0132
INDUS 0.0008 0.0031 0.2560 0.7979
CHAS 0.0204 0.0173 1.1841 0.2364
NOX -0.0050 0.0189 -0.2636 0.7921
RM 0.0581 0.0138 4.2259 0.0000
AGE 0.0010 0.0006 1.6094 0.1075
DIS -0.0308 0.0082 -3.7760 0.0002
RAD 0.0159 0.0035 4.5758 0.0000
TAX -0.0007 0.0002 -3.4265 0.0006
PTRATIO -0.0359 0.0057 -6.2886 0.0000
B 0.0005 0.0002 2.7437 0.0061
LSTAT -0.0398 0.0025 -15.6616 0.0000
(Dispersion parameter for poisson family taken to be 1.0000)
Null deviance: 1515.6486 on 395 degrees of freedom
Residual deviance: 329.3122 on 395 degrees of freedom
AIC: 2358.2324
After training the model, we'll predict test data and check the accuracy metrics.
tdata = model.transform(test)
tdata.show(3)
rmse = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="rmse")
rmse = rmse.evaluate(tdata)
mae = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="mae")
mae = mae.evaluate(tdata)
r2 = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="r2")
r2 = r2.evaluate(tdata)
print("RMSE: ", rmse)
print("MAE: ", mae)
print("R-squared: ", r2)
+--------------------+------+------------------+
| features|target| prediction|
+--------------------+------+------------------+
|[0.09378,12.5,7.8...| 21.7|19.731003924394102|
|[0.11747,12.5,7.8...| 18.9| 22.36646093334018|
|[0.17004,12.5,7.8...| 18.9|18.943575559905906|
+--------------------+------+------------------+
only showing top 3 rows
RMSE: 4.009492752595149
MAE: 3.054586317287038
R-squared: 0.7574608722630409
Visualizing the results
To
visualize the origianl and predicted data, we can use 'matplotlib'
library. We'll extract those data from the 'tdata' object.
x_ax = range(0, tdata.count())
y_pred=tdata.select("prediction").collect()
y_orig=tdata.select("target").collect()
plt.plot(x_ax, y_orig, label="original")
plt.plot(x_ax, y_pred, label="predicted")
plt.title("Boston test and predicted data")
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.legend(loc='best',fancybox=True, shadow=True)
plt.grid(True)
plt.show()
If you do new executions of your code, do not forget to close the spark context session.
# Stop session
sc.stop()
In this tutorial, we've briefly learned how to fit and predict
regression data by using PySpark GeneralizedLinearRegression model in Python. The full
source code is listed below.
Source code listing
from pyspark.ml.regression import GeneralizedLinearRegression from pyspark import SparkContext from pyspark.sql import SQLContext from pyspark.ml.feature import VectorAssembler from pyspark.ml.evaluation import RegressionEvaluator from sklearn.datasets import load_boston import pandas as pd import matplotlib.pyplot as plt boston = load_boston() df_boston = pd.DataFrame(boston.data,columns=boston.feature_names) df_boston['target'] = pd.Series(boston.target) print(df_boston.head()) sc = SparkContext().getOrCreate() sqlContext = SQLContext(sc) data = sqlContext.createDataFrame(df_boston) print(data.printSchema()) features = boston.feature_names.tolist() va = VectorAssembler(inputCols = features, outputCol='features') va_df = va.transform(data) va_df = va_df.select(['features', 'target']) va_df.show(3) (train, test) = va_df.randomSplit([0.8, 0.2]) glr=GeneralizedLinearRegression(labelCol="target",family="poisson",maxIter=10,regParam=0.3) model = glr.fit(train) print("Coefficients: ", model.coefficients) print("Intercept: ", model.intercept) print(str(model.summary)) tdata = model.transform(test) tdata.show(3) rmse = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="rmse") rmse = rmse.evaluate(tdata) mae = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="mae") mae = mae.evaluate(tdata) r2 = RegressionEvaluator(labelCol="target", predictionCol="prediction", metricName="r2") r2 = r2.evaluate(tdata) print("RMSE: ", rmse) print("MAE: ", mae) print("R-squared: ", r2) x_ax = range(0, tdata.count()) y_pred=tdata.select("prediction").collect() y_orig=tdata.select("target").collect() plt.plot(x_ax, y_orig, label="original") plt.plot(x_ax, y_pred, label="predicted") plt.title("Boston test and predicted data") plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.legend(loc='best',fancybox=True, shadow=True) plt.grid(True) plt.show() sc.stop()
References:
No comments:
Post a Comment