OPTICS (Ordering Points To Identify the Clustering Structure) is a density-based clustering algorithm similar to DBSCAN. It's used for estimating the density-based clustering structure in data. In this tutorial, we will explore how to apply the OPTICS method for detecting anomalies in a given dataset using the OPTICS class from the Scikit-learn library in Python.
Tutorial Overview
In this tutorial, we will cover the following steps:
Understanding OPTICS: An overview of OPTICS and its suitability for anomaly detection
Preparing the Data: Generating synthetic data using the
make_blobs
functionAnomaly Detection with OPTICS: Defining an OPTICS model and identifying anomalies in the dataset.
Source Code Listing
Why Use OPTICS for Anomaly Detection?
OPTICS is primarily a clustering algorithm, but it can be adapted for anomaly detection due to its unique characteristics:
Density-Based: OPTICS identifies dense clusters, making it well-suited for identifying outliers in sparser regions, which are often anomalies.
Hierarchical Structure: OPTICS reveals the hierarchical structure of clusters. It can help differentiate between anomalies within smaller clusters and those in larger clusters.
Automated Parameter Selection: OPTICS automatically determines clusters, making it flexible for changing cluster sizes and shapes.
Robust to Noise: Noise points are those data points that do not fit into any cluster. These can be useful for anomaly detection, as they often represent outliers.
Required Libraries and Functions
Before we begin, let's load the required libraries and functions:
from sklearn.cluster import OPTICS
from sklearn.datasets import make_blobs
from numpy import quantile, where, random
import matplotlib.pyplot as plt
Preparing the data
# Generate random data
random.seed(123)
x, _ = make_blobs(n_samples=350, centers=1, cluster_std=.4, center_box=(20, 5))
# Visualize the data
plt.scatter(x[:,0], x[:,1])
plt.grid(True)
plt.show()
# Define the model
model = OPTICS().fit(x)
# Get core distances
scores = model.core_distances_
# Set a threshold
thresh = quantile(scores, 0.98)
# Identify anomalies
index = where(scores >= thresh) values = x[index]
Finally, we'll visualize the results by highlighting the anomalies in a plot:
# Visualize the anomalies
plt.scatter(x[:, 0], x[:, 1])
plt.scatter(values[:, 0],values[:, 1], color='r')
plt.legend(("normal", "anomal"), loc="best", fancybox=True, shadow=True)
plt.grid(True)
plt.show()
from sklearn.cluster import OPTICS from sklearn.datasets import make_blobs from numpy import quantile, where, random import matplotlib.pyplot as plt random.seed(123) x, _ = make_blobs(n_samples=350, centers=1, cluster_std=.4, center_box=(20, 5)) plt.scatter(x[:,0], x[:,1]) plt.grid(True) plt.show() # Define the model
model = OPTICS().fit(x)
# Get core distances
scores = model.core_distances_
# Set a threshold
thresh = quantile(scores, 0.98)
# Identify anomalies
index = where(scores >= thresh) values = x[index]
# Visualize the anomalies plt.scatter(x[:,0], x[:,1]) plt.scatter(values[:,0],values[:,1], color='r') plt.legend(("normal", "anomal"), loc="best", fancybox=True, shadow=True) plt.grid(True) plt.show()
No comments:
Post a Comment