First we generate sample data, then train the model, predict test data, and finally, check the accuracy. We use 'maboost' and 'caret' packages in this tutorial.
To install the package, run install.package("maboost") command.
The source code is listed below.
Checking predicted test data results.
print(data.frame(test, predMAB))
a b flag predMAB
16 9 18 red red
19 4 13 green green
21 9 19 red red
35 1 13 yellow yellow
39 4 17 green green
47 3 20 green green
64 3 13 green green
90 2 12 yellow yellow
92 7 13 red red
116 2 12 yellow yellow
138 8 15 red red
139 10 11 red red
152 5 13 green green
154 3 10 green green
158 3 18 green green
175 7 17 red red
197 5 12 green green
199 2 17 yellow yellow
208 3 15 green green
210 2 13 yellow yellow
226 4 17 green green
227 5 19 green green
231 7 20 red red
238 9 19 red red
243 2 19 yellow yellow
259 5 15 green green
261 10 10 green red
271 9 16 red red
275 8 20 red red
280 7 15 red red
Checking model accuracy
confMatMb <- confusionMatrix(test[,3], predMAB)
print(confMatMb)
Confusion Matrix and Statistics
Reference
Prediction green red yellow
green 12 1 0
red 0 11 0
yellow 0 0 6
Overall Statistics
Accuracy : 0.9667
95% CI : (0.8278, 0.9992)
No Information Rate : 0.4
P-Value [Acc > NIR] : 5.303e-11
Kappa : 0.9479
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: green Class: red Class: yellow
Sensitivity 1.0000 0.9167 1.0
Specificity 0.9444 1.0000 1.0
Pos Pred Value 0.9231 1.0000 1.0
Neg Pred Value 1.0000 0.9474 1.0
Prevalence 0.4000 0.4000 0.2
Detection Rate 0.4000 0.3667 0.2
Detection Prevalence 0.4333 0.3667 0.2
Balanced Accuracy 0.9722 0.9583 1.0
Reference:
A Boosting Framework on Grounds of Online Learning by T. Naghibi and B. Pfister
No comments:
Post a Comment